1. Partial differentiation and gradients : 偏微分和梯度
  2. The generalization of the derivative to functions of several variables is the gradient : 导数对多变量函数的推广是梯度
  3. We find the gradient of the function f with respect to x by varying one variable at a time and keeping the others constant. The gradient is then the collection of these partial derivatives : 通过一次改变一个变量并使其他变量保持不变,我们发现函数f相对于x的梯度。 梯度就是这些偏导数的集合
  4. Useful Identities for computing gradients : 计算梯度的有用恒等式
  5. Backpropagation and Automatic Differentiation : 反向传播与自动微分
  6. We can think of automatic differentation as a set of techniques to numerically (in contrast to differentiation symbolically) evaluate the exact (up to machine precision) gradient of a function by working with intermediate variables and applying the chain rule : 我们可以把自动微分看作一套技术,通过处理中间变量和应用链式规则,用数值方法(而不是用符号表示微分)计算函数的精确(达到机器精度)梯度
  7. Forward pass in a multi-layer neural network to compute the loss : 多层神经网络中的前向传递计算损耗

results matching ""

    No results matching ""