Combination Sum(Medium)组合数之和
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Notes:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
解题思路:回溯+DFS
因为我们可以任意组合任意多个数,看其和是否是目标数,而且还要返回所有可能的组合,所以我们必须遍历所有可能性才能求解。为了避免重复遍历,我们搜索的时候只搜索当前或之后的数,而不再搜索前面的数。因为我们先将较小的数计算完,所以到较大的数时我们就不用再考虑有较小的数的情况了。这题是非常基本且典型的深度优先搜索并返回路径的题。
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new LinkedList<List<Integer>>();
if(candidates == null || candidates.length == 0)
return result;
List<Integer> current = new LinkedList<Integer>();;
Arrays.sort(candidates);
combinationSum(candidates, target, 0, current, result);
return result;
}
public void combinationSum(int[] candidates, int target, int start, List<Integer> curr, List<List<Integer>> result){
if(target == 0){
List<Integer> temp = new LinkedList<Integer>(curr);
result.add(temp);
return;
}
for(int i=start; i<candidates.length; i++){
if(target < candidates[i])
return;
curr.add(candidates[i]);
combinationSum(candidates, target - candidates[i], i, curr, result);
curr.remove(curr.size()-1);
}
}