Range Sum Query 2D - Mutable(Hard)
Given a 2D matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
The matrix is only modifiable by the update function.
You may assume the number of calls to update and sumRegion function is distributed evenly.
You may assume that row1 ≤ row2 and col1 ≤ col2.
Java代码:Binary Indexed Tree (BIT) solution.
public class NumMatrix {
int m, n;
int[][] arr; // stores matrix[][]
int[][] BITree; // 2-D binary indexed tree
public NumMatrix(int[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) {
return;
}
m = matrix.length;
n = matrix[0].length;
arr = new int[m][n];
BITree = new int[m + 1][n + 1];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
update(i, j, matrix[i][j]); // init BITree[][]
arr[i][j] = matrix[i][j]; // init arr[][]
}
}
}
public void update(int i, int j, int val) {
int diff = val - arr[i][j]; // get the diff
arr[i][j] = val; // update arr[][]
i++; j++;
while (i <= m) {
int k = j;
while (k <= n) {
BITree[i][k] += diff; // update BITree[][]
k += k & (-k); // update column index to that of parent
}
i += i & (-i); // update row index to that of parent
}
}
int getSum(int i, int j) {
int sum = 0;
i++; j++;
while (i > 0) {
int k = j;
while (k > 0) {
sum += BITree[i][k]; // accumulate the sum
k -= k & (-k); // move column index to parent node
}
i -= i & (-i); // move row index to parent node
}
return sum;
}
public int sumRegion(int i1, int j1, int i2, int j2) {
return getSum(i2, j2) - getSum(i1-1, j2) - getSum(i2, j1-1) + getSum(i1-1, j1-1);
}
}