Unique Path I (Medium)
Dynamic Programming
public int uniquePaths(int m, int n) {
if(m==0 || n==0) return 0;
if(m==1 || n==1) return 1;
int[][] dp = new int[m][n];
//left column
for(int i=0; i<m; i++){
dp[i][0] = 1;
}
//top row
for(int j=0; j<n; j++){
dp[0][j] = 1;
}
//fill up the dp table
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
Unique Path II (Medium)
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as1
and0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null||obstacleGrid.length==0)
return 0;
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1)
return 0;
int[][] dp = new int[m][n];
dp[0][0]=1;
//left column
for(int i=1; i<m; i++){
if(obstacleGrid[i][0]==1){
dp[i][0] = 0;
}else{
dp[i][0] = dp[i-1][0];
}
}
//top row
for(int i=1; i<n; i++){
if(obstacleGrid[0][i]==1){
dp[0][i] = 0;
}else{
dp[0][i] = dp[0][i-1];
}
}
//fill up cells inside
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
if(obstacleGrid[i][j]==1){
dp[i][j]=0;
}else{
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}