Majority Element II(Medium)
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorithm should run in linear time and in O(1) space.
解题思路:Moore投票算法中得到一些启发
观察可知,数组中至多可能会有2个出现次数超过 ⌊ n/3 ⌋ 的众数
记变量n1, n2为候选众数; c1, c2为它们对应的出现次数
遍历数组,记当前数字为num
若num与n1或n2相同,则将其对应的出现次数加1
否则,若c1或c2为0,则将其置为1,对应的候选众数置为num
否则,将c1与c2分别减1
最后,再统计一次候选众数在数组中出现的次数,若满足要求,则返回之。
public class Solution {
public List<Integer> majorityElement(int[] nums) {
// 1, 2
List<Integer> res = new ArrayList<>();
if(nums==null || nums.length==0) return res;
if(nums.length==1) {
res.add(nums[0]);
return res;
}
int m1 = nums[0];
int m2 = 0;
int c1 = 1;
int c2 = 0;
for(int i=1; i<nums.length; i++) {
int x = nums[i];
if(x==m1) ++c1;
else if(x==m2) ++c2;
else if(c1==0) {
m1 = x;
c1 = 1;
} else if(c2==0) {
m2 = x;
c2 = 1;
} else {
--c1; --c2;
}
}
c1 = 0; c2 = 0;
for(int i=0; i<nums.length; i++) {
if(m1 == nums[i]) ++c1;
else if(m2 == nums[i]) ++c2;
}
if(c1>nums.length/3) res.add(m1);
if(c2>nums.length/3) res.add(m2);
return res;
}
}