Matrix Zigzag Traversal(Medium)
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in ZigZag-order.
Example
Given a matrix:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10, 11, 12]
]
return [1, 2, 5, 9, 6, 3, 4, 7, 10, 11, 8, 12]
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0 || matrix[0].length == 0) return null;
int count = matrix.length * matrix[0].length;
int[] array = new int[count];
int r = 0, c = 0;
array[0] = matrix[0][0];
for (int i = 1; i < count; ) {
//斜上走到顶
while(i < count && r - 1 >= 0 && c + 1 < matrix[0].length) {
array[i++] = matrix[--r][++c];
}
//横右走一步,不可横右走时竖下走一步
if (i < count && c + 1 < matrix[0].length) {
array[i++] = matrix[r][++c];
} else if (i < count && r + 1 < matrix.length) {
array[i++] = matrix[++r][c];
}
//斜下走到底
while(i < count && r + 1 < matrix.length && c - 1 >= 0) {
array[i++] = matrix[++r][--c];
}
//竖下走一步,不可竖下走时横右走一步
if (i < count && r + 1 < matrix.length) {
array[i++] = matrix[++r][c];
} else if (i < count && c + 1 < matrix[0].length) {
array[i++] = matrix[r][++c];
}
}
return array;
}
}