Edit Distance 编辑距离(Hard)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解题思路
复杂度
时间 O(NM) 空间 O(NM)
这是算法导论中经典的一道动态规划的题。假设dp[i-1][j-1]表示一个长为i-1的字符串str1变为长为j-1的字符串str2的最短距离,如果我们此时想要把str1a这个字符串变成str2b这个字符串,我们有如下几种选择:
- 替换: 在str1变成str2的步骤后,我们将str1a中的a替换为b,就得到str2b (如果a和b相等,就不用操作)
- 增加: 在str1a变成str2的步骤后,我们再在末尾添加一个b,就得到str2b (str1a先根据已知距离变成str2,再加个b)
- 删除: 在str1变成str2b的步骤后,对于str1a,我们将末尾的a删去,就得到str2b (str1a将a删去得到str1,而str1到str2b的编辑距离已知)
public int editDistance2(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int[][] distances = new int[len1+1][len2+1];
for (int i = 0; i < len1 + 1; ++i)
distances[i][0] = i;
for (int j = 0; j < len2 + 1; ++j)
distances[0][j] = j;
//http://www.programcreek.com/2013/12/edit-distance-in-java/
for (int i = 1; i < len1 + 1; ++i) {
for (int j = 1; j < len2 + 1; ++j) {
if (str1.charAt(i - 1) == str2.charAt(j - 1))
distances[i][j] = distances[i - 1][j - 1];
else {
int deletion = distances[i - 1][j] + 1;
int insertion = distances[i][j - 1] + 1;
int substitution = distances[i - 1][j - 1] + 1;
distances[i][j] = Util.min(deletion, insertion, substitution);
}
}
}
return distances[len1][len2];
}