LRUCache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Analysis:

首先,对于cache,如果希望有O(1)的查找复杂度,肯定要用hashmap来保存key和对象的映射。对于LRU而言,问题在于如何用O(1)解决cache entry的替换问题。

简单的说,cache的存储是一个链表的话,那么只要保证从头到尾的顺序就是cache从新到旧的顺序就好了,对于任何一个节点,如果被访问了,那么就将该节点移至头部。如果cache已满,那么就把尾部的删掉,从头部插入新节点。

所以,需要用到两个数据结构.

  1. hashmap, 保存key和对象位置的映射

  2. list,保存对象新旧程度的序列,双向链表为O(1)

class Node{
    int key;
    int value;
    Node pre;
    Node next;

    public Node(int key, int value){
        this.key = key;
        this.value = value;
    }
}


public class LRUCache {
    int capacity;
    HashMap<Integer, Node> map;
    Node head=null;
    Node end=null;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<Integer, Node>(capacity);
    }

    public int get(int key) {
        if(map.containsKey(key)){
            Node n = map.get(key);
            remove(n);
            setHead(n);
            return n.value;
        }

        return -1;
    }

    public void remove(Node n){
        if(n.pre!=null){
            n.pre.next = n.next;
        }else{
            head = n.next;
        }

        if(n.next!=null){
            n.next.pre = n.pre;
        }else{
            end = n.pre;
        }
    }

    public void setHead(Node n){
        n.next = head;
        n.pre = null;

        if(head!=null)
            head.pre = n;

        head = n;

        if(end ==null)
            end = head;
    }

    public void set(int key, int value) {
        if(map.containsKey(key)){
            Node old = map.get(key);
            old.value = value;
            remove(old);
            setHead(old);
        }else{
            Node created = new Node(key, value);
            if(map.size()>=capacity){
                map.remove(end.key);
                remove(end);
                setHead(created);
            }else{
                setHead(created);
            }    
            map.put(key, created);
        }
    }
}

Caffeine

Caffeine is a modern in-memory local cache for Java 8

References

  1. High-Throughput, Thread-Safe, LRU Caching
  2. ConcurrentLinkedHashMap
  3. Caffeine is a high performance, near optimal caching library based on Java 8
  4. Caching best practices

results matching ""

    No results matching ""