Sliding Window Maximum (Hard) 滑动窗口最大值
题目大意:
给定一个数组,一个大小为k的滑动窗口从数组的最左端向最右端移动。你只可以看到窗口中的k个数字。每一次窗口向右边移动一步。
例如,给定数组nums = [1,3,-1,-3,5,3,6,7], k = 3
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7].
Note: You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
解题思路:
对每一个索引i,只保留有可能在滑动窗口[i-(k-1),i]或任何其后面的滑动窗口成为最大值的元素。 这就是说:
- If an element in the deque and it is out of i-(k-1), we discard them. We just need to poll from the head, as we are using a deque and elements are ordered as the sequence in the array
- Now only those elements within [i-(k-1),i] are in the deque. We then discard elements smaller than a[i] from the tail. This is because if a[x] <a[i] and x<i, then a[x] has no chance to be the "max" in [i-(k-1),i], or any other subsequent window: a[i] would always be a better candidate.
- As a result elements in the deque are ordered in both sequence in array and their value. At each step the head of the deque is the max element in [i-(k-1),i]
Java代码:
public int[] maxSlidingWindow(int[] a, int k) {
if (a == null || k <= 0) {
return new int[0];
}
int n = a.length;
int[] r = new int[n-k+1];
int ri = 0;
// store index
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < a.length; i++) {
// remove numbers out of range k
while (!q.isEmpty() && q.peek() < i - k + 1) {
q.poll();
}
// remove smaller numbers in k range as they are useless
while (!q.isEmpty() && a[q.peekLast()] < a[i]) {
q.pollLast();
}
// q contains index... r contains content
q.offer(i);
if (i >= k - 1) {
r[ri++] = a[q.peek()];
}
}
return r;
}